If ABCABC is a triangle and DD is a point on side ABAB with AD=BD=CDAD=BD=CD, find the value of ACBACB.


Answer:

9090

Step by Step Explanation:
  1. It is given that DD is a point on the side ABAB of a ABCABC such that AD=BD=CDAD=BD=CD.

    AC DB

    We are required to find the value of ACB.ACB.
  2. We are given,
    AD=CDDAC=DCA (Angles opposite to equal sides of a triangle) (1)      
    Also,
    BD=CDDBC=DCB (Angles opposite to equal sides of a triangle) (2)      
  3. In ABC,
    BAC+ACB+CBA=180 [Angle sum property of a Triangle]DAC+ACB+DBC=180DCA+ACB+DCB=180 [By eq (1) and (2)]ACB+ACB=1802ACB=180ACB=90
  4. Hence, the value of ACB is 90.

You can reuse this answer
Creative Commons License